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Many photoprocesses include a radiationless non-adiabatic transition 
*2- \kl at a critical geometry where the gap between the energy surfaces 
is small. Owing to the significant redistribution of the molecular charge the 
polar medium has a strong influence not only on the potential energy but 
also on the reaction coordinate. A statistical method which allows the 
solvent reorganization effect to be described has been suggested for the case 
when the potentials of both the initial and final states in the polar medium 
have local minima at some critical geometry. Its application to the photo- 
isomerization of cyanine dyes is discussed. 

1. Introduction 

Many photoprocesses, such as singlet-singlet and triplet-triplet energy 
transfer, isomerization reactions etc., have a common feature. In contrast 
with thermally activated reactions these processes occur in two steps 
(Fig. 1): after excitation of the species an energy barrier o0 on the excited 
state surface is overcome and then a radiationless transition *Z - \E 
takes place at a critical geometry ‘where the energy gap between o1 and 0: 
is small enough (about 1 - 2 eV) for the probability of such a transition to 
be significant. In Fig. 1 the path of such a process is shown by arrows: q’ 
is the reaction coordinate in the gas phase (or in a non-polar medium), 
Q’ = q’* corresponds to the critical geometry, and regions a and c correspond 
to the reactants and products respectively_ 

It has been shown by Velsko and Fleming [ 1 J and Rentsch [2] that 
in the case of the isomerization of polymethine dyes in polar solvents the 
rate of population of the local minimum of the excited state potential 
at q’= qlo is sufficiently large at room temperature for the preferred path 
for the deactivation of the photoexcited state to be that shown by arrows 
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Fig. 1. Curves of the potential energy Gil and cz for the isomerization reaction as a func- 
tion of the intramolecular coordinate q’: -, gas phase; - - -, polar solvent. Regions a 
and c correspond to the reactants and products respectively, and region b corresponds 
to the critical geometry q’ = qb. 

in Fig. 1. Therefore, the probability that a radiationless transition will take 
place is significant. Such a transition can affect other deactivation channels, 
e.g. the fluorescence ,decay kinetics [ 3,4]. 

Two aspects of the effect of the medium on the rate constants of the 
photoprocesses are discussed in the literature. Firstly the effect of the 
viscous drag on the motion along the reaction coordinate has been investi- 
g?ted (5 - 7] and has been found to lead to a change in the energy barrier 
&TO (Fig. 1). Secondly the effect of polar solvents on the potential energy 
surfaces has been studied [S, 9]. The difference between the potential 
energy surfaces in a polar medium and in the gas phase (or in a non-polar 
solvent) is particularly large for photoisomerization reactions which proceed 
via a torsional motion around a C-C bond because this motion is accom- 
panied by charge transfer [ 8, 101. In the case of polar solutions the potential 
energy surfaces in the ground and first excited states may have local minima 
at the critical geometry, whereas in the gas phase (or in a non-polar medium) 
the ground state surface has a maximum at this geometry (Fig. 1). 

In both cases the problem of determining the effects of the medium 
reduces to the correct evaluation of the potential energy surfaces in the 
polar solvent. Despite the importance of this aspect, such an approach 
takes into account only the static effects on the potential energy surfaces 
and does not include analysis of the liquid dynamics. Therefore it seems 
to be unsatisfactory. In the present paper we use the quantum-classical 
approximation [ ll] in an attempt to develop a consistent description of 
the effects of polar media on the probability of radiationless transition. 

As has been mentioned earlier the population of the local minimum of 
0, at Q’ = a; proceeds at a faster rate than any of the other processes of 
deactivation of the photoexcited state. We assume that in a polar solvent 
a quasi-equilibrium distribution of the nuclear system in this minimum is 
established and that this should be treated as the initial condition of the 
kinetic stage [ 123. This assumption is valid if the probability per unit time 
of the radiationless transition is much less than the rates of vibrational and 
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polarization relaxation of the nuclear system [Z]. Thus it is necessary to 
determine the decay with time of the quasi-equilibrium distribution due to 
the non-adiabatic interaction. 

@lY 
tials U,(q) 
where the 

two adiabatic electronic states \kl and q2 with adiabatic poten- 
and oZ(q) respectively need be taken into account in the region 
potential surfaces approach each other (Fig. 1, region b). If the 

Quclear subsystem is classical it can be described by the 2 X 2 density matrix 
p 1111. The diagonal elements sii(p, q, t) E ci(p, q, t) represent the classical 
distributions of the nuclear coordinates q and impulses p in the electronic 
states \ki, and the non-diagonal elements j&k@, q, t) represent the phase 
relations between the quantum states ‘I’i and !l?k (i # k, i, k = 1, 2). The set 
(p, q) consists of the nuclear coordinates and impulses (pint, qint) and @,, qS) 
of the reactants and solvents respectively. In the following treatment we 
assume that the internal coordinate set (p int, Qint) consists of a single degree 
of freedom @‘, q’) which is the reaction coordinate in the gas phase. 

2. Method 

The equation for the density matrix is of the Liouville type [ 11 J and 
describes the time evolution of the system with the hamiltonian 

i+=K+~+A~i?,+Vti, (1) 

where the .Bi (i = 1, 2, 3) are Pauli _matrices, K is the kinetic energy of the 
nuclei, 8= (0, + 0,)/2, A8 = (02 - 01)/2 and V represents the non- 
adiabatic interactions proportional to the velocities of the atomic nuclei 
U]- 

In this paper we assume that the potential surfaces in both the initial 
and final states have local minima at a critical geometry in a polar medium 
(Fig. 1). Then the process under discussion, which can be described as 
movement_of the representative point from region b oc the excited state 
potential U, to region c of the ground state potential UL, consists of two 
steps: a radiationless transition qk2wm* :\ki in region b and a thermally ac- 
tivated transition in the state q1 to the product region c. We assume that 
region b which is a region of quasi-equilibrium can be treated as a relatively 
long-lived transient (isomer) with a characteristic electronic and vibronic 
spectrum [ 13,143. The adiabatic potentials 0, and oZ can then be approx- 
imated as the sum of two independent contributions [ 151: 

iJ = Ui(q’) + Q(q,) 

(2) 

where U’,(q’) and Ui(q’) depend only on the intramolecular coordinate 
q’ and correspond to the potentials in the gas phase, and oi;‘(q,) and Di(qs) 
involve the interaction between the polar medium and the transient in 
which the internal coordinates are fixed and are equal to their equilibrium 
values in region b. 
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The Liouville operators z, and &, which describe the dynamics of the 
system in the electronic states \k, and *kz respectively, can be represented, 
by analogy with eqn. (2), as the sums [IS] 

zi=L;-tE; 
13) 

Poisson where the dynamic operators L;,2 denote the one-dimensional 
brat kets 

au),,, a... 
L’1,z . . . = - 

pr a... 
---_ 

aq' apf m’ aq' 
(4) 

The expressions for the operators zfl i.2 are analogous but they consist of a 
very large number of terms. 

The contribution of the solvent atomic nuclei to the non-adiabatic 
interaction in the case of fast relaxation of their velocities can be neglected. 
Thus the non-adiabatic interaction consists of a single term proportional to 
the velocity of the intramolecular motion [ 111: 

V- 
+ip’AFr* 

2m’(AU’ + A@‘)2 (5) 

where AF is the difference between the diabatic potential ranges in the gas 
phase in the region Q’ = c& at which they cross, 2r0 is the energy gap in the 
gas phase, AU’ = (Uk - C&)/2 and Ap = (pi - 0:)/2. 

It can be concluded from eqns. (2), (3) and (5) that the many-particle 
ezzects in the Liouville equation enter only through the Poisson brackets 
L 1+3 and the difference 

(6) 

This means [ 15 ] that the time evolution of the system can be described by 
the partial density matrix $(p’, Q’, Q, t) which depends on a single solvent 
collective coordinate Q. 

As the potentials 0, and 0, in polar solvents have minima at q’ = q&, 

the time evolution of Q has the characteristics of a relaxation process in both 
the initial and final states. Q(t) is usually considered [ 16,171 to be a quasi- 
stationary fluctuation [ 181 in polar media. Then the effective operators 
L’;(Q) and L:(Q), which describe the time evolution of the Q coordinate 
of the medium in the electronic states qkl and W2, can be expressed as dif- 
fusion operators in the effective potentials Urand U: [15 - 171: 

L7,,.._ =D 
a2... 
- +l a -- 
ax2 T ax a u;:, **- ax (7) 

where 
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29 - Arr 
x = (fJjy)1/2 

u; = Cx - (JW~)~‘? 2 - A” 
2 

u; = Cx + bW2)“212 + A” 
2 

E, is the energy for reorganization in the medium owing to the electronic 
transition *SW qIr, at Q’ = q&, A” is the difference between the equilib- 
rium polarization energies in the states e2 and qkl at this geometry, rS is 
the relaxation time of the orientation polarization of the solvent and T is 
the temperature in units of energy. 

The equation for the partial density matrix fi@‘, Q’, Q, t) is [ 151 

LL2 =G*, + L;',, (see eqns. (4) and (7)) and the non-adiabatic interaction V 
is given by eqn. (5). This equation is solved using the initial conditions 

Pik(PWYX,W = 6r26kzP~~(P’,Q’)P~~(x) 

p&(p’,q’) = const X exp 
I- YI 

p&(x) = const X exp 
I- Y 

(9) 

which correspond to the quasi-equilibrium distribution of the nuclear sub- 
system in the local minimum of the excited state potential U,. 

The probability of the radiationless transition !P2 “““+qI in region b 
is [15] 

JYt) = j-dp’ dq’ dxMdd,x,G 
b 

(10) 

The effective potentials 
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Ul = Wd) + U:‘(x) 
(11) 

u, = Wcl’) + U’:(x) 

which replace the real potentials (2) in eqn. (8) are paraboloidal in the region 
q’ = qh corresponding to the critical geometry (Fig. 2). These potentials 
intersect at x* = -Aeif/(2.Er)1’2 where Aeff = 2l?,, + A” is the difference 
between the minimum energies (Aeft = (U,),i, - (U,),i, (Fig. 2)) and 
2ro is the energy gap in the gas phase. The non-adiabatic interaction is 
greatest in the region (q& x*); therefore the dominant contribution to the 
probability (10) comes from this region, and 

P(t) = WfL,x* )t 

where W(q’, x*) is the probability per unit time of a radiationless transition. 
Since the effective potentials given by eqn. (11) intersect along the solvent 
coordinate x, the probability W(q’, x*) has the usual Arrhenius form 

UO W-Ax*) = wff exp -T ( 1 (12) 

It is not necessary to solve eqn. (8) in order to obtain the main parameter, 
i. e, the activation energy U,. Under the condition UO % T, U. is approximate- 
ly equal to the height of the crossing point (q’, x*) above the potential 
minimum of the initial state (Fig. 2): 

u,= (Er - Aed 
4E, 

(13) 

The frequency Weff at which the region x = x* is attained is the average of 
the intramolecular frequency S2 and the solvent relaxation rate ~,l. Its value 
can be obtained by solving eqn. (8) for the initial conditions (9). However, 
this problem is not actual because the activation energy U, cannot be 
calculated with sufficient accuracy. It has recently been shown by Zusmztn 
[19] that in the special case Q s 7,-l 

Fig. 2. The paraboloidal effective potentials U,(q’, x) and U,(q’, X) (eqn. (11)): U,, is 
the height of the crossing point (Q’, x*) above the minimum of Uz and Aeff is the differ- 
ence between the values of potential minima. 
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7s-l _ (J% + Aed~ E, 1’2 
Oeff =-ssn 

7r (1 2E, iz 

Equation (12) gives an estimate of the probability per unit time of the 
radiationless transition at the critical geometry q’ = q& As a result of this 
transition the system is in the local minimum of the ground state potential 
(Fig. 1). The product region c can be reached by an activation transition over 
the energy barrier (Fig. 1). The probabilities per unit time of the forward 
and backward reactions (to the product and reactant regions respectively) 
are 

W,=w,exp - % 
i 1 

W, = 63, exp - $ 
( ) 

(14) 

~3, and ~3, are effective frequencies which depend on the solvent viscosity 
[ 201, and U, and U, are the energy barrier values for the forward and 
backward pathways along the coordinate q’ in the medium. 

3. Discussion 

The results obtained illustrate the significant effect of a polar medium 
on the dynamics of the photoprocesses under discussion. This effect leads 
to a shift of the potential energy surfaces in polar solvents relative to those 
in the gas phase or in non-polar solvents_ It has also been shown that in a 
polar medium the reaction coordinate coincides with the aggregate coordi- 
nate x of the solvent which describes the reorganization in the medium 
owing to the electronic transition \k2 - \kI at q’ = qb, whereas in the gas 
phase the coordinate q’ of internal motion plays the role of ti reaction coor- 
dinate. The energy E, for reorganization of the medium can be large (E, 2 
1 eV) as a result of the substantial difference between the charge distribu- 
tions of the transient at configuration q’ = q; in the electronic states q2 
and *I_ Thus the influence of the polar medium on the rate constant of the 
radiationless transition can be significant. 

We shall now discuss the photoisomerization reaction of the strepto- 
cyanine dye pentamethinecyanine in a polar solvent (water) using the 
method discussed above. 

The reaction proceeds by torsion around bonds 3-4 and 2-3 in the 
molecule (Fig. 3). The corresponding potential energy curves in water [S] 
are shown in Fig. 4. The potential energy curves in the gas phase were ob- 
tained using a Pariser-Parr-Pople calculation including a doubly excited 
electron configuration, and the solvation energies were evaluated by means 
of a model corresponding to Klopman’s salvation concept. 



Fig. 3. Schematic diagram of the isomerization of pentamethinecyanine. 

Fig. 4. Potential energy curves of the trans-cis isomerization of pentamethinecyanine in 
a polar medium (water) as a function of the torsion angle cp [8]. 

A significant effect of the polar medium is the decrease of the energy 
barrier o0 (Fig. 1). The barrier for rotation around the 2-3 bond (about 
80 kJ mol-l) is higher than that for rotation around the 3-4 bond (about 
40 kJ moT1). Therefore the second pathway should be preferred. 

The rate constant of the radiationless transition S1 w So resulting 
from the non-adiabatic interaction proportional to the velocity of the 
torsional motion requires to be calculated, As has been mentioned, the 
potential surface of the ground state of polymethine dyes in the gas phase 
has a maximum at cp = 90”. The following inequality is a necessary condition 
for the application of the proposed method (i.e. the introduction of an 
aggregate coordinate Q for the solvent): 

a, 4 7,’ (15) 

where fi, is the torsion frequency in the medium and rV is the time required 
to establish a partial equilibrium over all the degrees of freedom of the 
solvent except Q. ?Vhen this condition is obeyed eqn. (8) can be used to 
describe the deactivation of the photoexcited state. It should be noted that 
this equation is an exact dynamic equation which does not imply any 



21 

relation between the frequency G? of the intramolecular motion and the 
rate ~9~ of solvent relaxation, as is also the case for the equation proposed 
by Zusman [19] (see also ref. 21). 

Since 7,l = 1013 s-l 1221 (i.e. rv is much less than 7,) and the esti- 
mated value of a in the gas phase is about 3 X 1Ol3 s-l, the inequality (15) 
means that a high viscosity situation (a < p) exists [ 1 J (0 is the viscous 
drag coefficient and is assumed to have a value of about 1014 s-l). 

It is necessary to determine the parameters E, and Aeff in order to 
use eqn. (12) to calculate the probability of radiationless transition at cp = 
90”. At 90” torsion the structure is characterized by charge transfer from one 
part of the molecule to the other. The polymethinic fragment is uncharged 
in the ground state whereas the polyenic fragment bears a positive charge; 
however, in the S1 state the polymethinic fragment at cp = 90” has a positive 
charge +e whereas the polyenic fragment is uncharged (Fig. 5). The charge 
redistribution caused by the electronic transition S1 -‘SOatcp=90”can 
be approximately described as a transfer of the elementary charge from the 
centre of the polymethinic fragment to the centre of the polyenic fragment. 
In the metallic sphere model the reorganization energy E, and the relative 
solvation energy A” are [ 231 

E,=e2(-$ --$)(k + & -+)*3.*eV 

AJJ=e2(l- ;)($ - ;) a() 

where a and b are the radii of the polymethinic and polyenic fragments 
respectively (b * a * 1.4 !L [S] ), P is the distance between their centres 

(r m 3.5 A [83), n is the refractive index of the solvent and E is the static 
dielectric constant (if the solvent is water nz = 1.8 and E = 78). 

In the Debye model the solvent relaxation time is r8 = 7g2/e [24] 
where rn = 0.85 X lo-l1 s is the Debye reorientation time for a single dipole 
in the medium. By using the potential curves [8 ] we find 2r0 = 2 eV and 
A eft =Z 2 eV, so that the activation energy U0 (eqn. (13)) is about 15 kJ 

(4 (b) 
Fig. 6. n electron density distribution of (a) the ground state and (b) the first excited 
state of pentamethinecyanine twisted throu#h 90” determined by means of a quantum- 
chemical calculation [ 8 1. 
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mol-‘. Then the rate constant of the radiationless transition S1 - So 
at cp = 90” is 

w~2x10’“s-’ (16) 

where we have assumed ueff = min(G?, 7,-l) = 7,-l = 5 X 1Ol2 s-l. The rate 
constant given by eqn. (16) corresponds to the formation of the transient 
(isomer) at ‘p = 90” in the ground state. The rates of the transformations to 
the stable cis or trans forms are given by eqns. (14). At high viscosity (a < 
@) the frequencies w, and w, in eqns. (14) are [20] w, = sLn,/2@ and 
0, = SZn,J27@, where S2= and In, are the frequencies of vibration in the 
“Upturn” potential near the barriers U, and U, respectively. According 
to ref. 8 aL, = fi, * a = 3 X 1013 s-l, U, = 50 kJ mol-’ and U, = 20 kJ 
mol-‘. Then the rate constants of the transition from the short-lived con- 
formation at cp = 90” to the trans and cis isomers are 

W tram = 7 x lo8 s-l 
(17) 

W,iS = 3 x lo3 s-l 

Estimates (16) and (17) are in qualitative agreement with the results of inves- 
tigations of fast photoprocesses in polymethine dyes performed by Rentsch 
121. We assume the double-valley scheme suggested by Rentsch for the 
isomerization of streptocyanine dyes: the two valleys correspond to the 
potential minima of the trans isomer and the short-lived conformation at 
cp = 909 Rentsch’s experimental results for a number of polymethine dyes 
are 

W(exp) = (4.0 - 15.0) x lOlO s-1 

W *rans(-’ = (2.0 - 3.3) x log s-l 
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